p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.480C23, C4.762+ (1+4), C8⋊6D4⋊18C2, C4⋊C4.376D4, D4⋊3Q8⋊5C2, D4⋊2Q8⋊20C2, C4⋊2Q16⋊41C2, (C4×SD16)⋊59C2, D4⋊6D4.8C2, (C2×D4).326D4, C8.D4⋊30C2, C22⋊C4.59D4, D4.32(C4○D4), D4.7D4⋊50C2, C4⋊C8.113C22, C4⋊C4.423C23, (C4×C8).294C22, (C2×C4).523C24, (C2×C8).358C23, C4.SD16⋊35C2, C23.340(C2×D4), C4⋊Q8.158C22, C4.Q8.63C22, C2.84(D4○SD16), (C4×D4).172C22, (C2×D4).427C23, C4.49(C8.C22), C22⋊C8.91C22, (C2×Q8).231C23, (C2×Q16).87C22, (C4×Q8).167C22, C2.159(D4⋊5D4), C22⋊Q8.94C22, D4⋊C4.77C22, C23.36D4⋊26C2, C23.47D4⋊19C2, (C22×C4).336C23, C22.783(C22×D4), Q8⋊C4.117C22, (C2×SD16).162C22, (C2×M4(2)).125C22, C4.248(C2×C4○D4), (C2×C4).616(C2×D4), C2.80(C2×C8.C22), (C2×C4⋊C4).675C22, (C2×C4○D4).221C22, SmallGroup(128,2063)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 376 in 194 conjugacy classes, 88 normal (38 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×2], C4 [×10], C22, C22 [×10], C8 [×4], C2×C4 [×3], C2×C4 [×2], C2×C4 [×19], D4 [×2], D4 [×7], Q8 [×7], C23 [×2], C23, C42, C42, C22⋊C4 [×2], C22⋊C4 [×5], C4⋊C4 [×3], C4⋊C4 [×2], C4⋊C4 [×10], C2×C8 [×2], C2×C8 [×2], M4(2) [×2], SD16 [×2], Q16 [×2], C22×C4 [×2], C22×C4 [×5], C2×D4 [×2], C2×D4 [×2], C2×Q8, C2×Q8 [×2], C2×Q8, C4○D4 [×6], C4×C8, C22⋊C8 [×2], D4⋊C4, D4⋊C4 [×2], Q8⋊C4, Q8⋊C4 [×6], C4⋊C8, C4.Q8, C4.Q8 [×2], C2×C4⋊C4 [×2], C2×C4⋊C4, C4×D4 [×2], C4×D4, C4×Q8, C4⋊D4, C22⋊Q8 [×4], C22⋊Q8 [×2], C22.D4 [×2], C42.C2, C4⋊Q8 [×2], C2×M4(2) [×2], C2×SD16, C2×Q16 [×2], C2×C4○D4 [×2], C23.36D4 [×2], C8⋊6D4, C4×SD16, D4.7D4 [×2], C4⋊2Q16, C8.D4 [×2], D4⋊2Q8, C23.47D4 [×2], C4.SD16, D4⋊6D4, D4⋊3Q8, C42.480C23
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×2], C24, C8.C22 [×2], C22×D4, C2×C4○D4, 2+ (1+4), D4⋊5D4, C2×C8.C22, D4○SD16, C42.480C23
Generators and relations
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=a2, ab=ba, cac-1=a-1, dad=ab2, eae=a-1b2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece=a2b2c, ede=b2d >
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 48 18 43)(2 45 19 44)(3 46 20 41)(4 47 17 42)(5 36 61 37)(6 33 62 38)(7 34 63 39)(8 35 64 40)(9 21 13 50)(10 22 14 51)(11 23 15 52)(12 24 16 49)(25 56 32 59)(26 53 29 60)(27 54 30 57)(28 55 31 58)
(1 53 3 55)(2 56 4 54)(5 52 7 50)(6 51 8 49)(9 37 11 39)(10 40 12 38)(13 36 15 34)(14 35 16 33)(17 57 19 59)(18 60 20 58)(21 61 23 63)(22 64 24 62)(25 47 27 45)(26 46 28 48)(29 41 31 43)(30 44 32 42)
(1 3)(2 17)(4 19)(5 34)(6 40)(7 36)(8 38)(9 11)(10 16)(12 14)(13 15)(18 20)(21 52)(22 24)(23 50)(25 57)(26 55)(27 59)(28 53)(29 58)(30 56)(31 60)(32 54)(33 64)(35 62)(37 63)(39 61)(41 48)(42 44)(43 46)(45 47)(49 51)
(1 12)(2 15)(3 10)(4 13)(5 32)(6 28)(7 30)(8 26)(9 17)(11 19)(14 20)(16 18)(21 42)(22 46)(23 44)(24 48)(25 61)(27 63)(29 64)(31 62)(33 55)(34 57)(35 53)(36 59)(37 56)(38 58)(39 54)(40 60)(41 51)(43 49)(45 52)(47 50)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,48,18,43)(2,45,19,44)(3,46,20,41)(4,47,17,42)(5,36,61,37)(6,33,62,38)(7,34,63,39)(8,35,64,40)(9,21,13,50)(10,22,14,51)(11,23,15,52)(12,24,16,49)(25,56,32,59)(26,53,29,60)(27,54,30,57)(28,55,31,58), (1,53,3,55)(2,56,4,54)(5,52,7,50)(6,51,8,49)(9,37,11,39)(10,40,12,38)(13,36,15,34)(14,35,16,33)(17,57,19,59)(18,60,20,58)(21,61,23,63)(22,64,24,62)(25,47,27,45)(26,46,28,48)(29,41,31,43)(30,44,32,42), (1,3)(2,17)(4,19)(5,34)(6,40)(7,36)(8,38)(9,11)(10,16)(12,14)(13,15)(18,20)(21,52)(22,24)(23,50)(25,57)(26,55)(27,59)(28,53)(29,58)(30,56)(31,60)(32,54)(33,64)(35,62)(37,63)(39,61)(41,48)(42,44)(43,46)(45,47)(49,51), (1,12)(2,15)(3,10)(4,13)(5,32)(6,28)(7,30)(8,26)(9,17)(11,19)(14,20)(16,18)(21,42)(22,46)(23,44)(24,48)(25,61)(27,63)(29,64)(31,62)(33,55)(34,57)(35,53)(36,59)(37,56)(38,58)(39,54)(40,60)(41,51)(43,49)(45,52)(47,50)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,48,18,43)(2,45,19,44)(3,46,20,41)(4,47,17,42)(5,36,61,37)(6,33,62,38)(7,34,63,39)(8,35,64,40)(9,21,13,50)(10,22,14,51)(11,23,15,52)(12,24,16,49)(25,56,32,59)(26,53,29,60)(27,54,30,57)(28,55,31,58), (1,53,3,55)(2,56,4,54)(5,52,7,50)(6,51,8,49)(9,37,11,39)(10,40,12,38)(13,36,15,34)(14,35,16,33)(17,57,19,59)(18,60,20,58)(21,61,23,63)(22,64,24,62)(25,47,27,45)(26,46,28,48)(29,41,31,43)(30,44,32,42), (1,3)(2,17)(4,19)(5,34)(6,40)(7,36)(8,38)(9,11)(10,16)(12,14)(13,15)(18,20)(21,52)(22,24)(23,50)(25,57)(26,55)(27,59)(28,53)(29,58)(30,56)(31,60)(32,54)(33,64)(35,62)(37,63)(39,61)(41,48)(42,44)(43,46)(45,47)(49,51), (1,12)(2,15)(3,10)(4,13)(5,32)(6,28)(7,30)(8,26)(9,17)(11,19)(14,20)(16,18)(21,42)(22,46)(23,44)(24,48)(25,61)(27,63)(29,64)(31,62)(33,55)(34,57)(35,53)(36,59)(37,56)(38,58)(39,54)(40,60)(41,51)(43,49)(45,52)(47,50) );
G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,48,18,43),(2,45,19,44),(3,46,20,41),(4,47,17,42),(5,36,61,37),(6,33,62,38),(7,34,63,39),(8,35,64,40),(9,21,13,50),(10,22,14,51),(11,23,15,52),(12,24,16,49),(25,56,32,59),(26,53,29,60),(27,54,30,57),(28,55,31,58)], [(1,53,3,55),(2,56,4,54),(5,52,7,50),(6,51,8,49),(9,37,11,39),(10,40,12,38),(13,36,15,34),(14,35,16,33),(17,57,19,59),(18,60,20,58),(21,61,23,63),(22,64,24,62),(25,47,27,45),(26,46,28,48),(29,41,31,43),(30,44,32,42)], [(1,3),(2,17),(4,19),(5,34),(6,40),(7,36),(8,38),(9,11),(10,16),(12,14),(13,15),(18,20),(21,52),(22,24),(23,50),(25,57),(26,55),(27,59),(28,53),(29,58),(30,56),(31,60),(32,54),(33,64),(35,62),(37,63),(39,61),(41,48),(42,44),(43,46),(45,47),(49,51)], [(1,12),(2,15),(3,10),(4,13),(5,32),(6,28),(7,30),(8,26),(9,17),(11,19),(14,20),(16,18),(21,42),(22,46),(23,44),(24,48),(25,61),(27,63),(29,64),(31,62),(33,55),(34,57),(35,53),(36,59),(37,56),(38,58),(39,54),(40,60),(41,51),(43,49),(45,52),(47,50)])
Matrix representation ►G ⊆ GL6(𝔽17)
1 | 6 | 0 | 0 | 0 | 0 |
11 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 10 |
0 | 0 | 1 | 0 | 7 | 0 |
0 | 0 | 0 | 10 | 0 | 1 |
0 | 0 | 7 | 0 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 5 | 12 |
0 | 0 | 1 | 1 | 12 | 12 |
0 | 0 | 5 | 12 | 1 | 16 |
0 | 0 | 12 | 12 | 16 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
11 | 16 | 0 | 0 | 0 | 0 |
1 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 16 |
0 | 0 | 10 | 0 | 1 | 0 |
0 | 0 | 0 | 16 | 0 | 10 |
0 | 0 | 1 | 0 | 7 | 0 |
G:=sub<GL(6,GF(17))| [1,11,0,0,0,0,6,16,0,0,0,0,0,0,0,1,0,7,0,0,16,0,10,0,0,0,0,7,0,16,0,0,10,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,16,1,5,12,0,0,1,1,12,12,0,0,5,12,1,16,0,0,12,12,16,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[11,1,0,0,0,0,16,6,0,0,0,0,0,0,0,10,0,1,0,0,7,0,16,0,0,0,0,1,0,7,0,0,16,0,10,0] >;
Character table of C42.480C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | -2 | -2 | -2 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ (1+4) |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | complex lifted from D4○SD16 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | 0 | 0 | complex lifted from D4○SD16 |
In GAP, Magma, Sage, TeX
C_4^2._{480}C_2^3
% in TeX
G:=Group("C4^2.480C2^3");
// GroupNames label
G:=SmallGroup(128,2063);
// by ID
G=gap.SmallGroup(128,2063);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,758,723,2019,346,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a*b^2,e*a*e=a^-1*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations